Атмосферное электричество, что такое атмосферное электричество, что оно из себя представляет, кто и как изучают атмосферное электричество будет кратко описано в следующей статье, более подробно можно изучить атмосферное электричество можно почитав специальную литературу, посвящённую данной теме.

Атмосферное электричество.

Рис. 1. Изменение напряжённости электрич. поля Е с высотой Н. 1 — Ленинград; 2 — Киев: 3 — Ташкент.

Рис. 1. Изменение напряжённости электрического поля с высотой.

1) Совокупность электрических явлений и процессов в атмосфере.
2) Раздел физики атмосферы, изучающий электрические явления в атмосфере и её электрические свойства. При исследовании атмосферного электричества изучают электрическое поле в атмосфере, её ионизацию и проводимость, электрические токи в ней, объёмные заряды, заряды облаков и осадков, грозовые разряды и многое другое. Все проявления атмосферного электричества тесно связаны между собой и на их развитие сильно влияют метеорологические факторы — облака, осадки, метели и тому подобное. К области атмосферного электричества обычно относят процессы, происходящие в тропосфере и стратосфере.

Начало атмосферного электричества как науке было положено в 18 веке американским учёным Б. Франклином, экспериментально установившим электрическую природу молнии, и русским учёным М. В. Ломоносовым — автором первой гипотезы, объясняющей электризацию грозовых облаков. В 20 веке были открыты проводящие слои атмосферы, лежащие на высоте более 60—100 км (ионосфера, магнитосфера Земли), установлена электрическая природа полярных сияний и обнаружен ряд других явлений, изучению которых посвящены соответствующие науки, выделившиеся из атмосферного электричества. Развитие космонавтики позволило начать изучение электрических явлений в более высоких слоях атмосферы прямыми методами. Две основные современные теории атмосферного электричества были созданы английским учёным Ч. Вильсоном и советским учёным Я. И. Френкелем. Согласно теории Вильсона, Земля и ионосфера играют роль обкладок конденсатора, заряжаемого грозовыми облаками. Возникающая между обкладками разность потенциалов приводит к появлению электрического поля атмосферы. По теории Френкеля, электрическое поле атмосферы объясняется всецело электрическими явлениями, происходящими в тропосфере, — поляризацией облаков и их взаимодействием с Землёй, а ионосфера не играет существенной роли в протекании атмосферных электрических процессов.

Атмосферное электричество данного района зависит от глобальных и локальных факторов. Районы, где отсутствуют скопления аэрозолей и источники сильной ионизации, рассматриваются как зоны «хорошей», или «ненарушенной» погоды, здесь преобладают глобальные факторы. В зонах «нарушенной» погоды (в районах гроз, пыльных бурь, осадков и др.) преобладают локальные факторы.

Электрическое поле атмосферы.

В тропосфере все облака и осадки, туманы, пыль обычно электрически заряжены; даже в чистой атмосфере постоянно существует электрическое поле. Исследования в зонах «хорошей» погоды, начатые в 19 века, показали, что у земной поверхности существует стационарное электрическое поле с напряжённостью «Е», в среднем равной около 130 в/м. Земля при этом имеет отрицательный заряд, равный около 3 105 к, а атмосфера в целом заряжена положительно. Однако при осадках и особенно грозах, метелях, пылевых бурях и тому подобных напряжённость поля может резко менять направление и величину, достигая иногда 1000 в/м. Наибольшие значения «Е» имеет в средних широтах, а к полюсам и экватору убывает. В зонах «хорошей» погоды «Е» с высотой в целом уменьшается, например над океанами. Вблизи земной поверхности, в так называемом слое перемешивания толщиной 300—3000 м, где скапливаются аэрозоли, «Е» может с высотой возрастать (рис. 1). Выше слоя перемешивания «Е» убывает с высотой по экспоненциальному закону и на высоте 10 км не превышает несколько в/м. Это убывание «Е» связано с тем, что в атмосфере содержатся положительные объёмные заряды, плотность которых также быстро убывает с высотой. Разность потенциалов между Землёй и ионосферой составляет 200—250 кв.

Напряжённость электрического поля «Е» меняется во времени. Наряду с локальными суточными и годовыми вариациями «Е» отмечаются синхронные для всех пунктов суточные (см. кривые 1 и 2, рис. 2) и годовые вариации «Е» — так называемые унитарные вариации. Унитарные вариации связаны с изменением электрического заряда Земли в целом, локальные — с изменениями величины и распределения по высоте объёмных электрических зарядов в атмосфере в данном районе.

Электрическая проводимость атмосферы.

Электрическое состояние атмосферы в значительной степени определяется её электрической проводимостью «λ», которая создаётся ионами, находящимися в атмосфере. Наличие ионов в атмосфере и является причиной потери заряда изолированным заряженным телом при соприкосновении с воздухом (явление, открытое в конце 18 веке французским физиком Ш. Кулоном). Электрическая проводимость «λ» зависит от количества ионов, содержащихся в единице объёма (их концентрации), и их подвижности. Основной вклад в «λ» вносят лёгкие ионы, обладающие наибольшей подвижностью u > 10-5м2 сек-1 в-1.

Электрическая проводимость атмосферы очень мала и может сравниться с проводимостью хороших изоляторов. У земной поверхности в среднем λ = (1 - 2)·10-18 ом-1 м-1 и увеличивается с высотой примерно по экспоненциальному закону; на высоте около 30 км «λ» достигает значений, почти в 150 раз больших, чем у земной поверхности. Выше проводимость увеличивается ещё более, причём особенно резко с высот, до которых проникают ионизующие излучения Солнца и где начинается образование ионосферы, проводимость которой приблизительно в 1012 раз больше, чем в атмосфере вблизи земной поверхности.

Основные ионизаторы атмосферы: 1) космические лучи, действующие во всей толще атмосферы; 2) излучение радиоактивных веществ, находящихся в Земле и воздухе; 3) ультрафиолетовое и корпускулярное излучения Солнца, ионизующее действие которых заметно проявляется на высотах более 50—60 км. Концентрация легких; ионов возрастает с увеличением интенсивности ионизации и уменьшением концентрации частиц в атмосфере, поэтому концентрация лёгких ионов растет с высотой. Этот факт в сочетании с увеличением подвижности ионов при уменьшении плотности воздуха объясняет характер изменения «λ» и «Е» с изменением высоты.

Электрический ток в атмосфере.

Рис. 2. Суточный ход унитарной вариации напряжённости электрич. поля Е: 1 — над океанами; 2 — в полярных областях; 3 — изменение площади S, занятой грозами, в течение суток.

Рис. 2. Унитарная вариация напряжённости электрического поля.

Движение ионов под действием сил электрического поля создаёт в атмосфере вертикальный ток проводимости in = , со средней плотностью, равной около (2—3)·10-12 а/м2. Таким образом, в зонах «хорошей» погоды сила тока на всю поверхность Земли составляет около 1800 а. Время, в течение которого заряд Земли за счёт токов проводимости атмосферы уменьшился бы до 1/е ≈ 0,37 от своего первоначального значения, равно ~ 500 сек. Так как заряд Земли в среднем не меняется, то очевидно, что существуют «генераторы» атмосферного электричества, заряжающие Землю. Помимо токов проводимости, в атмосфере текут значительные электрические диффузионные и конвективные токи.

«Генераторы» атмосферного электричества.

«Генераторами» атмосферного электричества в зонах нарушенной погоды являются пылевые бури и извержения вулканов, метели и разбрызгивание воды прибоем и водопадами, облака и осадки, пар и дым промышленных источников и т. д. При почти всех перечисленных явлениях электризация может проявляться весьма бурно: извержение вулканов, песчаные бури и даже метели приводят иногда к образованию молний, всё же наибольший вклад в электризацию атмосферы вносят облака и осадки.

По мере укрупнения частиц облака, увеличения его толщины, усиления осадков из него растет его электризация. Так, в слоистых и слоисто-кучевых облаках плотность объёмных зарядов ρ ≈ 3 10-12 к/км3, что приблизительно в 10 раз превышает их плотность в чистой атмосфере, а в грозовых облаках r доходит до 3·10-8 к/м3. Облака могут быть заряжены положительно в верхней части и отрицательно в нижней, но могут иметь и противоположную полярность, а также преимущественный заряд одного знака. Плотность тока осадков на Землю из слоисто-дождевых облаков ioc = 10-12 а/м2, в то время как из грозовых ioc = 10-9а/м2. Полная сила тока, текущего на Землю от одного грозового облака, в средних широтах равна около — (0,01—0,1) а, а ближе к экватору до — (0,5—1,0) а. Сила токов, текущих в самих этих облаках, в 10—100 раз больше силы токов, притекающих к Земле. Таким образом, гроза в электрическом отношении подобна короткозамкнутому генератору.

При высоких значениях электрического поля у земной поверхности порядка 500—1000 в/м начинается электрический разряд с острых вытянутых предметов (травы, деревьев, мачт, труб и т.д.), который иногда становится видимым (так называемые огни святого Эльма, особенно яркие в горах и на море, см. Эльма огни). Возникающие при метелях, ливнях и особенно грозах токи коронирования способствуют обмену зарядами между Землёй и атмосферой.

Таким образом, электрическое поле Земли и ток Земля — атмосфера в зонах хорошей погоды поддерживаются процессами в зонах нарушенной погоды. На земном шаре одновременно существует около 1800 гроз (см. кривую 3, рис. 2); суммарная сила тока от них, заряжающего Землю отрицательным зарядом, доходит до 1000 а. Облака слоистых форм, хотя и менее активные, чем грозовые, но зато покрывающие около половины земной поверхности, также вносят существенный вклад в поддержание электрического поля Земли. Исследования атмосферного электричества позволяют выяснить природу процессов, ведущих к колоссальной электризации грозовых облаков, в целях прогноза и управления ими; выяснить роль электрических сил в образовании облаков и осадков; они дадут возможность снижения электризации самолётов и увеличения безопасности полётов, а также раскрытия тайны образования шаровой молнии.

Френкель Я. И., Теория явлений атмосферного электричества (pdf), Л.—М. 1949; Тверской П. Н., Атмосферное электричество (pdf), Л., 1949; Имянитов И. М., Приборы и методы для изучения электричества атмосферы, М., 1957; Имянитов И. М., Измерение электростатических полей в верхних слоях атмосферы (pdf). 1957; Труды главной геофизической обсерватории им. А.И. Воейкова. Выпуск 10. Атмосферное электричество (pdf). Под редакцией:канд. физ.-мат. наук И.М. Имянитов, канд. физ.-мат. наук В.П. Колоколов.; Имянитов И. М. и Шифрин К. С., Современное состояние исследований атмосферного электричества (pdf), «Успехи физических наук», 1962, т. 76, в. 4, с. 593; Имянитов И. М. и Чубарина Е. В., Электричество свободной атмосферы, Л., 1965; Чалмерс Дж. А., Атмосферное электричество (djvu). Л., 1974; Кашлева Л. В., Атмосферное электричество (pdf), 2008.

Ссылки для перехода в следующие разделы: