Фазовый переход, фазовое превращение, в широком смысле – переход вещества из одной фазы в другую при изменении внешних условий – температуры, давления, магнитного и электрического полей и так далее; в узком смысле – скачкообразное изменение физических свойств при непрерывном изменении внешних параметров. Различие двух трактовок термина «Фазовый переход» видно из следующего примера. В узком смысле переход вещества из газовой фазы в плазменную (см. Плазма) не является фазовым переходом, так как ионизация газа происходит постепенно, но в широком смысле это – фазовый переход. В данной статье термин «Фазовый переход» рассматривается в узком смысле.

Значение температуры, давления или какой-либо другой физической величины, при котором происходит фазовый переход, называют точкой перехода.

Различают фазовый переход двух родов. При фазовом переходе первого рода скачком меняются такие термодинамические характеристики вещества, как плотность, концентрация компонент; в единице массы выделяется или поглощается вполне определённое количество теплоты, носящее название теплоты перехода. При фазовым переходе второго рода некоторая физическая величина, равная нулю с одной стороны от точки перехода, постепенно растет (от нуля) при удалении от точки перехода в другую сторону. При этом плотность и концентрации изменяются непрерывно, теплота не выделяется и не поглощается.

Фазовый переход – широко распространённое в природе явление. К фазовому переходу 1 рода относятся: испарение и конденсация, плавление и затвердевание, сублимация и конденсация в твёрдую фазу, некоторые структурные переходы в твёрдых телах, например образование мартенсита в сплаве железо – углерод. В антиферромагнетиках с одной осью намагничивания магнитных подрешёток фазовый переход 1 рода происходит во внешнем магнитном поле, направленном вдоль оси. При определённом значении поля моменты магнитных подрешёток поворачиваются перпендикулярно направлению поля (происходит «опрокидывание» подрешёток). В чистых сверхпроводниках магнитное поле вызывает фазовый переход 1 рода из сверхпроводящего в нормальное состояние (см. Сверхпроводимость).

При абсолютном нуле температуры и фиксированном объёме термодинамически равновесной является фаза с на и низшим значением энергии. Фазовый переход 1 рода в этом случае происходит при тех значениях давления и внешних полей, при которых энергии двух разных фаз сравниваются. Если зафиксировать не объём тела V, а давление р, то в состоянии термодинамического равновесия минимальной является энергия Гиббса Ф (или G), а в точке перехода в фазовом равновесии находятся фазы с одинаковыми значениями Ф (см. Гиббсова энергия).

Многие вещества при малых давлениях кристаллизуются в не плотноупакованные структуры. Например, кристаллический водород состоит из молекул, находящихся на сравнительно больших расстояниях друг от друга; структура графита представляет собой ряд далеко отстоящих слоев атомов углерода. При достаточно высоких давлениях таким рыхлым структурам соответствуют большие значения энергии Гиббса. Меньшим значениям Ф в этих условиях отвечают равновесные плотноупакованные фазы. Поэтому при больших давлениях графит переходит в алмаз, а молекулярный кристаллический водород должен перейти в атомарный (металлический). Квантовые жидкости 3He и 4He при нормальном давлении остаются жидкими вплоть до самых низких из достигнутых температур (Т ~ 0,001 К). Причина этого – в слабом взаимодействии частиц и большой амплитуде их колебаний при температурах, близких к абсолютному нулю (так называемые нулевых колебаний, см. Неопределённостей соотношение). Однако повышение давления (до 20 атм при Т»0 К) приводит к затвердеванию жидкого гелия. При отличных от нуля температурах и заданных давлении и температуре равновесной по-прежнему является фаза с минимальной энергией Гиббса (минимальная энергия, из которой вычтена работа сил давления и сообщенное системе количество теплоты).

Для фазового перехода 1 рода характерно существование области метастабильного равновесия вблизи кривой фазового перехода 1 рода (например, жидкость можно нагреть до температуры выше точки кипения или переохладить ниже точки замерзания). Метастабильные состояния существуют достаточно долго по той причине, что образование новой фазы с меньшим значением Ф (термодинамически более выгодной) начинается с возникновения зародышей этой фазы. Выигрыш в величине Ф при образовании зародыша пропорционален его объёму, а проигрыш – площади поверхности (значению поверхностной энергии). Возникшие маленькие зародыши увеличивают Ф, и поэтому с подавляющей вероятностью они будут уменьшаться и исчезнут. Однако зародыши, достигшие некоторого критического размера, растут, и всё вещество переходит в новую фазу. Образование зародыша критического размера – очень маловероятный процесс и происходит достаточно редко. Вероятность образования зародышей критического размера увеличивается, если в веществе имеются чужеродные включения макроскопических размеров (например, пылинки в жидкости). Вблизи критической точки разница между равновесными фазами и поверхностная энергия уменьшаются, легко образуются зародыши больших размеров и причудливой формы, что отражается на свойствах вещества (см. Критические явления).

Примеры фазового перехода II рода – появление (ниже определённой в каждом случае температуры) магнитного момента у магнетика при переходе парамагнетик – ферромагнетик, антиферромагнитного упорядочения при переходе парамагнетик – антиферромагнетик, возникновение сверхпроводимости в металлах и сплавах, возникновение сверхтекучести в 3He и 4He, упорядочение сплавов, появление самопроизвольной (спонтанной) поляризации вещества при переходе параэлектрик – сегнетоэлектрик и так далее.

Л. Д. Ландау (1937) предложил общую трактовку всех фазовых переходов II рода, как точек изменения симметрии: выше точки перехода система обладает более высокой симметрией, чем ниже точки перехода. Например, в магнетике выше точки перехода направления элементарных магнитных моментов (спинов) частиц распределены хаотически. Поэтому одновременный поворот всех спинов не меняет физических свойств системы. Ниже точки перехода спины имеют преимущественную ориентацию. Одновременный их поворот изменяет направление магнитного момента системы. Другой пример: в двухкомпонентном сплаве, атомы которого А и В расположены в узлах простой кубической кристаллической решётки, неупорядоченное состояние характеризуется хаотическим распределением атомов А и В по узлам решётки, так что сдвиг решётки на один период не меняет её свойств. Ниже точки перехода атомы сплава располагаются упорядоченно: ... ABAB... Сдвиг такой решётки на период приводит к замене всех атомов А на В или наоборот. В результате установления порядка в расположении атомов симметрия решётки уменьшается.

Сама симметрия появляется и исчезает скачком. Однако величина, характеризующая асимметрию (параметр порядка), может изменяться непрерывно. При фазовом переходе II рода параметр порядка равен нулю выше точки перехода и в самой точке перехода. Подобным образом ведёт себя, например, магнитный момент ферромагнетика, электрическая поляризация сегнетоэлектрика, плотность сверхтекучей компоненты в жидком 4He, вероятность обнаружения атома А в соответствующем узле кристаллической решётки двухкомпонентного сплава и так далее.

Для фазового перехода II рода характерно отсутствие скачков плотности, концентрации, теплоты перехода. Но точно такая же картина наблюдается и в критической точке на кривой фазового перехода I рода (см. Критические явления). Сходство оказывается очень глубоким. Вблизи критической точки состояние вещества можно характеризовать величиной, играющей роль параметра порядка. Например, в случае критической точки на кривой равновесия жидкость – пар это – отклонение плотности от среднего значения. При движении по критической изохоре со стороны высоких температур газ однороден, и эта величина равна нулю. Ниже критической температуры, вещество расслаивается на две фазы, в каждой из которых отклонение плотности от критической не равно нулю. Поскольку вблизи точки фазового перехода II рода фазы мало отличаются друг от друга, возможно образование зародышей большого размера одной фазы в другой (флуктуации), точно так же, как вблизи критической точки. С этим связаны многие критические явления при фазовом переходе II рода: бесконечный рост магнитной восприимчивости ферромагнетиков и диэлектрической постоянной сегнетоэлектриков (аналогом является рост сжимаемости вблизи критической точки жидкость – пар), бесконечный рост теплоёмкости, аномальное рассеяние электромагнитных волн [световых в жидкости и паре (см. Опалесценция критическая), рентгеновских в твёрдых телах], нейтронов в ферромагнетиках. Существенно меняются и динамические явления, что связано с очень медленным рассасыванием образовавшихся флуктуаций. Например, вблизи критической точки жидкость – пар сужается линия рэлеевского рассеяния света, вблизи Кюри точки ферромагнетиков и Нееля точки антиферромагнетиков замедляется спиновая диффузия (см. Спиновые волны) и так далее. Средний размер флуктуаций (радиус корреляции) R растет по мере приближения к точке фазового перехода II рода и становится в этой точке бесконечно большим.

Современные достижения теории фазового перехода II рода и критических явлений основаны на гипотезе подобия. Предполагается, что если принять R за единицу измерения длины, а среднюю величину параметра порядка ячейки с ребром R – за единицу измерения параметра порядка, то вся картина флуктуаций не будет зависеть ни от близости к точке перехода, ни от конкретного вещества. Все термодинамические величины являются степенными функциями R. Показатели степеней называют критическими размерностями (индексами). Они не зависят от конкретного вещества и определяются лишь характером параметра порядка. Например, размерности в точке Кюри изотропного материала, параметром порядка которого является вектор намагниченности, отличаются от размерностей в критической точке жидкость – пар или в точке Кюри одноосного магнетика, где параметр порядка – скалярная величина.

Вблизи точки перехода уравнение состояния имеет характерный вид закона соответственных состояний. Например, вблизи критической точки жидкость – пар отношение \(\style{font-family:'Times New Roman'}{\frac{\rho-\rho_к}{\rho_ж-\rho_г}}\) зависит только от \(\style{font-family:'Times New Roman'}{\frac{\rho-\rho_к}{\rho_ж-\rho_г}\times К_Т}\) (здесь ρ - плотность, ρк - критическая плотность, ρж – плотность жидкости, ρг – плотность газа, p – давление, pk – критическое давление, Кт – изотермическая сжимаемость), причём вид зависимости при подходящем выборе масштаба один и тот же для всех жидкостей (см. Критические явления).

Достигнуты большие успехи в теоретическом вычислении критических размерностей и уравнений состояния в хорошем согласии с экспериментальными данными. Приближенные значения критических размерностей приведены в таблице.

Таблица критических размерностей термодинамических и кинетических величин.
Величина Т - Тk Теплоемкость Восприимчивость* Магнитное поле Магнитный момент Ширина линии рэлеевского рассеяния
Размерность -3/2 3/16 2 -5/2 -1/2 -3/2
* Изменение плотности с давлением, намагниченности с напряжённостью магнитного поля и др. Tk – критическая температура.

Дальнейшее развитие теории фазового перехода II рода связано с применением методов квантовой теории поля, в особенности метода ренормализационной группы. Этот метод позволяет, в принципе, найти критические индексы с любой требуемой точностью.

Деление фазового перехода на два рода несколько условно, так как бывают фазовые переходы I рода с малыми скачками теплоёмкости и других величин и малыми теплотами перехода при сильно развитых флуктуациях. Фазовый переход – коллективное явление, происходящее при строго определённых значениях температуры и др. величин только в системе, имеющей в пределе сколь угодно большое число частиц.

Ландау Л. Д., Лифшиц Е. М., Статистическая физика, 2 изд., М., 1964 (Теоретическая физика, т. 5); Ландау Л. Д., Ахиезер А. И., Лифшиц Е. М., Курс общей физики. Механика и молекулярная физика, 2 изд., М., 1969; Браут Р., Фазовые переходы, пер. с англ., М., 1967; Фишер М., Природа критического состояния, пер. с англ., М., 1968; Стенли Г., Фазовые переходы и критические явления, пер. с англ., М., 1973; Анисимов М. А., Исследования критических явлений в жидкостях, «Успехи физических наук», 1974, т. 114, в. 2; Паташинский А. З., Покровский В. Л., Флуктуационная теория фазовых переходов, М., 1975; Квантовая теория поля и физика фазовых переходов, пер. с англ., М., 1975 (Новости фундаментальной физики, вып. 6); Вильсон К., Когут Дж., Ренормализационная группа и e-разложение, пер, с англ., М., 1975 (Новости фундаментальной физики, в. 5).